Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Mapei Mapecem QuickPatch

PRODUCT USE
Used according to manufacturer's directions. Concrete patch.

SUPPLIER
Company: Mapei Australia Pty Ltd
Address: 12 Parkview Drive
Acherfield, QLD 4108
Australia
Telephone: 07- 32765000 (Mon- Fri 9am- 5pm)
Fax: 07- 32765076

Company: Mapei New Zealand Ltd
Address: 30 Fisher Crescent
Mt Wellington, Auckland
New Zealand
Telephone: +64 9 921 1994
Telephone: (03) 479 1200 (normal hours) - New Zealand Poisons information centre
Emergency Tel: (03) 474 0999

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE
HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

RISK
- Irritating to respiratory system and skin.
- Risk of serious damage to eyes.
- May cause SENSITISATION by skin contact.
- Harmful: danger of serious damage to health by prolonged exposure through inhalation.
- May cause CANCER by inhalation.
- Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

SAFETY
- Keep locked up.
- Do not breathe dust.
- Avoid contact with skin.
- Avoid contact with eyes.
- Wear suitable protective clothing.
- In case of insufficient ventilation, wear suitable respiratory equipment.
- Wear suitable gloves.
- Wear eye/face protection.
- Use only in well ventilated areas.
- Keep container in a well ventilated place.
- Avoid exposure - obtain special instructions before use.
- To clean the floor and all objects contaminated by this material, use water and detergent.
- This material and its container must be disposed of in a safe way.
- Keep away from food, drink and animal feeding stuffs.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>silica crystalline - quartz</td>
<td>14808-60-7</td>
<td>30-60</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>65997-16-2</td>
<td>10-30</td>
</tr>
<tr>
<td>limestone</td>
<td>1317-65-3</td>
<td>10-30</td>
</tr>
</tbody>
</table>
Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

calcium sulfate 7778-18-9 3-7
portland cement 65997-15-1 1-5

Section 4 - FIRST AID MEASURES

SWALLOWED
• Immediately give a glass of water.
• First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

EYE
■ If this product comes in contact with the eyes:
• Immediately hold eyelids apart and flush the eye continuously with running water.
• Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
• Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
• Transport to hospital or doctor without delay.

SKIN
■ If skin contact occurs:
• Immediately remove all contaminated clothing, including footwear.
• Flush skin and hair with running water (and soap if available).
• Seek medical attention in event of irritation.

INHALED
• If fumes or combustion products are inhaled remove from contaminated area.
• Lay patient down. Keep warm and rested.
• Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
• Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

NOTES TO PHYSICIAN
Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA
• There is no restriction on the type of extinguisher which may be used.
• Use extinguishing media suitable for surrounding area.

FIRE FIGHTING
• When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
• When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
• Alert Fire Brigade and tell them location and nature of hazard.
• Wear breathing apparatus plus protective gloves in the event of a fire.
• Prevent, by any means available, spillage from entering drains or water courses.
• Use fire fighting procedures suitable for surrounding area.

FIRE/EXPLOSION HAZARD
• Non combustible.
• Not considered a significant fire risk, however containers may burn, silicon dioxide (SiO2).
• When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.
• May emit corrosive fumes.

FIRE INCOMPATIBILITY
■ None known.
Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.

MAJOR SPILLS
Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

SUITABLE CONTAINER
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS
The following materials had no OELs on our records
- calcium aluminate cement: CAS:65997-16-2 CAS:12042-68-1

MATERIAL DATA
MAPEI MAPECEM QUICKPATCH:
PORTLAND CEMENT:
SILICA CRYSTALLINE - QUARTZ:
The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 µm (+-) 0.3 µm and with a geometric standard deviation of 1.5 µm (+-) 0.1 µm, i.e. generally less than 5 µm.

CALCIUM ALUMINATE CEMENT:
MAPEI MAPECEM QUICKPATCH:
PORTLAND CEMENT:
For aluminium oxide:
 The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.
 [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition.

MAPEI MAPECEM QUICKPATCH:
SILICA CRYSTALLINE - QUARTZ:
 Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow.
 Exposure to respirable crystalline silicas (RCS) represents a significant hazard to workers, particularly those employed in the construction industry where respirable dusts of cement and concrete are common.

CALCIUM SULFATE:
MAPEI MAPECEM QUICKPATCH:
 for calcium sulfate:
 The TLV-TWA is thought to be protective against the significant risks of eye, skin and other physical irritation.

MAPEI MAPECEM QUICKPATCH:
PORTLAND CEMENT:
 NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans.

MAPEI MAPECEM QUICKPATCH:
PORTLAND CEMENT:
 for calcium silicate:
 containing no asbestos and <1% crystalline silica
 ES TWA: 10 mg/m3 inspirable dust
 TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4
 Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3 are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

MAPEI MAPECEM QUICKPATCH:
 WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS.
 The International Agency for Research on Cancer (IARC) has classified occupational exposures to respirable (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite.
 Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours.

SILICA CRYSTALLINE - QUARTZ:
 WARNING: For inhalation exposure ONLY:
 This substance has been classified by the ACGIH as A2 Suspected Human Carcinogen.

CALCIUM ALUMINATE CEMENT:
For aluminium oxide and pyrophoric grades of aluminium:
 Twenty seven year experience with aluminium oxide dust (particle size 96% 1.2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.
 The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

LIMESTONE:
 Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations.

CALCIUM SULFATE:

PORTLAND CEMENT:
 For calcium oxide:
 The TLV-TWA is thought to be protective against undue irritation and is analogous to that recommended for sodium hydroxide.
 For chrome(VI) containing substances:

continued...
Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium. Such surveillance should emphasise:

- demography, occupational and medical history and health advice
- physical examination with emphasis on the respiratory system and skin
- weekly skin inspection of hands and forearms by a "responsible person".

Portland cement is considered to be a nuisance dust that does not cause fibrosis and has little potential to induce adverse effects on the lung.

PERSONAL PROTECTION

RESPIRATOR

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene.
 - nitrile rubber.
 - butyl rubber.
 - fluorocaoutchouc.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.

ENGINEERING CONTROLS

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.
Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE
Grey to white powder with a cement odour; dispersible in water.

PHYSICAL PROPERTIES
Solid.
Does not mix with water.
 sinking in water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Melting Range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>VOC = 0g/l</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>11.0-13.0 (slurry)</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapour Pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>2.0-2.3</td>
</tr>
<tr>
<td>Relative Vapour Density</td>
<td>Not Available</td>
</tr>
<tr>
<td>(air=1)</td>
<td></td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY
• Presence of incompatible materials.
• Product is considered stable.
• Hazardous polymerisation will not occur.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ACUTE HEALTH EFFECTS

SWALLOWED
■ The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (eg. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health).
Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastrointestinal tract.

SKIN
■ If applied to the eyes, this material causes severe eye damage.

EYE
■ The material may accentuate any pre-existing dermatitis condition.

Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds.
Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.
Open cuts, abraded or irritated skin should not be exposed to this material.

There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact...

continued...
or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Levels above 10 μg/m³ of suspended inorganic sulfates in the air may cause an excess risk of asthmatic attacks in susceptible persons.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

- Studies show that inhaling this substance for over a long period (e.g. in an occupational setting) may increase the risk of cancer.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Harmful: danger of serious damage to health by prolonged exposure through inhalation.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. This has been demonstrated via both short- and long-term experimentation.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation.

Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products.

Crystalline silicas activate the inflammatory response of white blood cells after they injure the lung epithelium. Chronic exposure to crystalline silicas reduces lung capacity and predisposes to chest infections. A large part of the crystals accumulates in the lungs. Silicosis can occur, a condition where irreversible scarring of the lung occurs. Symptoms do not appear until months to years after exposure. Smoking increases this risk. Most simple cases of silicosis do not produce symptoms, but they can progress and eventually cause a tuberculosis-like syndrome which can be fatal. When silicosis is advanced, there is an increased risk of lung cancer and lymphoma. Laws in some areas require those exposed to silica to be under health surveillance.

Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections.

Repeated exposures, in an occupational setting, to high levels of fine-divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect.

TOXICITY AND IRRITATION

- The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound.

No significant acute toxicological data identified in literature search.

CARCINOGEN

<table>
<thead>
<tr>
<th>Substance</th>
<th>International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs</th>
</tr>
</thead>
</table>
| silica crystalline| Carb}
SKIN

limestone

GESAMP/EHIS Composite List - GESAMP Hazard Profiles

D1: skin irritation/corrosion

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>silica crystalline - quartz</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>Available</td>
<td>Available</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>limestone</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>calcium sulfate</td>
<td>HIGH</td>
<td>No Data</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>portland cement</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.

Otherwise:
- If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Indications of Danger:

T Toxic

continued
POISONS SCHEDULE

None

REGULATIONS

Regulations for ingredients

silica crystalline - quartz (CAS: 14808-60-7, 122304-48-7, 122304-49-8, 12425-26-2, 1317-79-9, 70594-95-5, 87347-84-0) is found on the following regulatory lists;

calcium aluminate cement (CAS: 65997-16-2, 12042-68-1) is found on the following regulatory lists;

- "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals"

limestone (CAS: 1317-65-3) is found on the following regulatory lists;

sulfate (CAS: 7778-18-9, 10101-41-4) is found on the following regulatory lists;

Section 15 - REGULATORY INFORMATION

Values have not been established*

Portland cement (CAS: 65997-15-1) is found on the following regulatory lists:
"Australia Exposure Standards", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals"

No data for Mapei Mapecem QuickPatch (CW: 40-1084)

Section 16 - OTHER INFORMATION

INGREDIENTS WITH MULTIPLE CAS NUMBERS

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica crystalline - quartz</td>
<td>14808-60-7, 122304-48-7, 122304-49-8, 12425-26-2, 1317-79-9, 70594-95-5, 87347-84-0</td>
</tr>
<tr>
<td>Calcium aluminate cement</td>
<td>65997-16-2, 12042-68-1</td>
</tr>
<tr>
<td>Calcium sulfate</td>
<td>7778-18-9, 10101-41-4</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 23-Oct-2013
Print Date: 26-May-2014

This is the end of the MSDS.